ECUMASTER PNP ECU SERIES

Application Note

LOTUS ELISE 2ZZ PNP ECU

Preliminary version - to be checked and proofreaded

Contents

1. Copyright and trademarks	.3
2. Safety precautions	.3
3. Introduction	.4
4. ECU features	.4
5. Installation	.5
6. First start	.6
7. Wide band oxygen sensor	.7
8. Drive by wire (DBW)	.8
9. Basic tuning	.9
9.1 Fuel dose	.9
9.2 Ignition advance	10
9.3 Knock sensing	11
9.4 Idle control	11
9.5 Can Bus	12
9.6 Air condition	12
9.7 Revolution limiter	13
9.8 Variable Valves Lift	13
9.9 Variable Valves Timing	14
9.10 Heat soak pump	14
9.11 Coolant fans	14
9.12 Vehicle speed	15
9.13 Traction control	15
10. Function assignement	16
11. Spare inputs / outpus	17
12. Revision history	18

1. Copyright and trademarks

All trademarks, service marks, trade names, trade dress, product names and logos appearing in this document are the property of their respective owners.

2. Safety precautions

- The ECUMASTER BLACK PNP ECU series is designed for motorsport applications only and cannot be used on public roads!
- Incorrect tuning with the ECUMASTER EMU BLACK PNP ECU can cause serious engine damage!
- Never modify the device's settings while the vehicle is moving as it may cause an accident!
- ECUMaster assumes no responsibility for damage caused by incorrect installation and/or tuning of the device!
- To ensure proper use of the ECUMASTER EMU BLACK PNP ECU and to prevent risk of damage to your vehicle, you must read these instructions and understand them thoroughly before attempting to install this unit.
- Modification of the tables and parameters should be performed only by people who understand the operation of the device and operation of modern fuel injection and ignition systems.
- Never short-circuit the wires of the engine's wiring loom or the outputs of the ECUMASTER EMU BLACK PNP ECU.
- All modifications to the engine's wiring loom must be performed with the negative terminal of the battery disconnected.
- It is critical that all connections in the wiring loom are properly insulated.
- The device must be disconnected before performing any welding on the vehicle!

3. Introduction

The EMU BLACK PNP ECU series was created to simplify the connection of the EMU BLACK ECU to popular cars. The ECU has a preload base map for an unmodified stock car which is a very good starting point for tuning the engine. In chapter 10 there is table with connector descriptions and assigned EMU BLACK function. The unused outputs and inputs are available on the pig tail connectors. For more details, please refer to chapter 11 and 12.

4. ECU features

The list below summarizes all EMU BLACK PNP ECU features for the Mini Cooper R53

- Precise fuel control based on Speed Density strategy
- Advanced ignition angle control
- Real time tuning
- Wideband oxygen sensor support (LSU 4.2 or LSU 4.9)
- Knock control
- Drive by wire support with auto-calibration feature
- Fuel auto-tune function
- Support of OEM CAN stream
- Sport functions like traction control, boost control, rev matching, gear cut, etc.
- Safety features like oil pressure cut, stuck throttle detection, lambda guard and more
- Easy and intuitive software

5. Installation

- 1. Disconnect the negative terminal of the battery (lacated in the car trunk)
- 2. The ECU is located in engine bay behind passenger head
- 3. Disconnect the ECU connecters and remove the OEM ECU
- 4. Connect the OEM ECU connectors and USB cable
- 5. Connect the vaccum hose to the EMU BLACK PNP ECU nipple
- 6. Connect the negative battery terminal

6. First start

- 1. Connect the USB cable to the laptop
- 2. Start Ecumaster EMU Black client (www.ecumaster.com/products/emu-black/)
- 3. Turn ignition on

Now the ECU should connect to the client software (the connection status on the left bottom corner of application should turn green and change to 'Connected'). If there is no connection, please check if the USB cable is properly inserted. The ECU is provided with a loaded base map for standard Lotus 2ZR engine.

> Sensors setup

📑 Roost

Open log window group basic and check the following channels (marked red) display proper values. The coolant temperature sensor (CLT) and intake air temperature (IAT) depends on the temperature of the coolant and temperature under the bonnet. The battery voltage should be about 12V (depends on the battery condition). TPS should be 0 and MAP should be equal to the actual barometric pressure. If all of the sensor readings are correct the electronic throttle should be checked.

< D B R R Y = = ;;	🚔 隆 🗐 🏦 🔀 🕜	
v 🚺 Log 🧹	Desktop 1 Desktop 2	Desktop 3 Deskto
ALS Analog inputs	DBW	
	Name	Value Unit
	DBW target	0,000 %
Basic	DBW pos	0,000 %
Boost	DBW error	0,000
DBW	DBW delta error	0,000
Diff control	DBW friction corr.	0,000
EGT	DBW Out. DC	0,000 %
📕 Enrichments	DBW characteristic #2	0,000
📕 FC reason	DBW Pot error	0,000 V
🗾 Flex Fuel		
FS	<	>
Euclactive corr		

> 🜔 Engine start 🗒 Basi > 🛋 Enrichments Value Name Unit > 🍬 Fueling RPM 0 rpm > 🜒 Ignition BARO 100 kPa Knock sensors MAP 105 kPa > 🙆 Idle tps Iat 0 % > 🅖 Outputs °C 21 @ Boost CIT °C 28 I DBW 12.43 v Battery voltage 🖇 🎵 Traction control Fuel level 100 % INACT... 💧 VVT ECU State ECU Reset > 🔯 Sport Tables set > 🍆 Nitrous Engine actual power 0 kW > 🔊 Flex Fuel Engine actual torque 0.00 Nm > 🗑 Engine protection AT Blocks START NO > 🖄 Timers > 🌈 Engine torque manag Automatic gearbox
S Other > 譮 CAN, Serial 🗸 🛅 Log J ALS Analog inputs 📕 AT 🗐 Basio Boost

Desktop 1

Press the throttle pedal. The **DBW pos** value should follow the **DBW target** value. We strongly recommend to use automatic DBW calibration tool to set up the electronic throttle calibration parameters to the car

throttle (see the DBW calibration chapter).

If all of the above checks are ok, you can start the engine. The provided base map was created using OEM Lotus car, however due to the different wear of the engines the fuel dose (*lambda* vs *lambda target*) should be checked especially on the full engine load (see the tuning fuel dose and wide band oxygen sensor chapters).

In the case the engine is modified (trubochargerm, smaller suprecharger pulley, different injectors, etc.) the base map should be adjusted. Using the car without adjustment, especially on the high load may lead to engine damage.

7. Wide band oxygen sensor

The EMU BLACK PnP ECU is equipped with wideband oxygen sensor control that is capable to support Bosch LSU 4.2 and Bosch LSU 4.9 sensor. By default, the ECU is set up to use the OEM narrow band oxygen sensor. All signals required to connect a wideband sensor are available on the OEM Lotus connector at unused terminals.

In the case of Lotus 2ZZ PnP ECU we provide additional terminals required to connect wideband oxygen sensor to unused ECU terminals. Three of the wires is shared with the OEM sensor (+12V, Vs and Heater control). You can splice the wires. Do not forget to disconnect the OEM narrow band oxygen sensor.

Bosch LSU 4.2

ECU Terminals	Description	LSU 4.2 connector
ЗК	WBO Heater	4
4E	WBO Ip	6
3A	WBO Vs	1
3D	WBO Rcal	2
4F	WBO Vgnd	5
3G	+12V	3

Bosch LSU 4.9

ECU Terminals	Description	LSU 4.9 connector
3K	WBO Heater	3
4E	WBO Ip	1
3A	WBO Vs	6
3D	WBO Rcal	5
4F	WBO Vgnd	2
3G	+12V	4

Remember to disconnect OEM lambda sensor before connecting wideband oxygen sensor!

To select appropriate oxygen sensor, open the **Sensor setup / Oxygen sensor** If the the standard narrow band oxygen sensor is used, option *Use WBO heater for NBO sensor* must be enabled.

📕 Sensors setup - Oxygen Sensor 📃 🔲						
Oxygen Sensor						
Sensor type	Narrow band					
Fuel type (for AFR)	Gasoline					
Use WBO Heater for NBO sensor						
Lambda 2 enable Disable						

If LSU 4.2 or LSU 4.9 is selected, we strongly recomend to use Conservative heat up *Heater Mode*.

🔲 Sensors setup - Oxygen Sensor						
Oxygen Sensor						
Sensor type	Wide band (LSU 4.9)	-				
Fuel type (for AFR)	Gasoline					
Heater mode	Conservative heat up					
Lambda 2 enable	Disable					

To check the oxygen sensor, start the engine, wait when the sensor heats up, and observe logging channel *Lambda*

8. Drive by wire (DBW)

The engine is equipped with the electronic throttle. We strongly recommend to use electronic throttle calibration tool before first running. It takes about 5 minutes, and adjusts all parameters to fit the particular car throttle. From the application menu select option Tools/DBW Calibration tool. Do not forget to press F2 after the calibration, to save new

DBW calibration tool	\times
START Exit	
Tuning log	^
	~

settings in the device flash memory. It is also important to check if the throttle follows the throttle target request (*DBW pos* vs *DBW target* log channels).

To change how the pedal position, influences the throttle position the table DBW/DBW Characteristic can be adjusted.

9. Basic tuning

9.1 Fuel dose

The main engine configuration is located in Fueling / General

Fueling - General	- 0 ×
General	
Engine displacement	1600
Fueling type	Speed density
Enable baro correction	
Injectors size	343 cc/min
Use MAP for Lambda target	

If the car has different injectors to OEM installed, injector size should be adjusted. Also when other injector types are used the dead time calibration table should be adjusted (*Fueling/ Injectors/Injectors cal.*).

The volumetric efficiency table defines the ratio of the mass density of the air-fuel mixture drawn into the cylinder at atmospheric pressure for given Load/RPM points. The table can be found in *Fueling/Fuel tables/VE table*. In connection to the Lambda target table it is the base parameter for calculating fuel dose. First step in tuning fuel is setting Lambda target table for desired values. The next step is to tune VE table so that the lambda value for the whole table matches the target. EMU Black has a feature for autotune VE table based on log values. The detailed procedure is described in EMU BLACK Client software help.

To adjust the injection angle you need to use *Fueling/Injectors/Injection angle* table. Make sure that *Injection angle control* in *Injectors phase* window is set to *End of injection*.

🔲 Fueling - Injectors phas	e .		🔡 Fu	eling -	Injecti	ion ang	jle				_ [IJ×
								靵 (2			
Injectors phase			4:.0	410	410	410	410	410	410	410	7000	
Injection angle control	End of injection (table)		396	397	400	404	407	408	408	408	6000	
Injector 1 Phase	Ignition event 1		381	383	390	398	404	405	405	405	5000	
Injector 2 Phase	Ignition event 4	-	367	370	379	391	401	403	403	403	4000	
Injector 3 Phase	Ignition event 2		352	356	369	385	398	400	400	400	3000	(rpm)
Injector 4 Phase	Ignition event 3											
Injector 5 Phase	Disabled		276	278	305	369	396	400	400	400	2000	RPM
Injector 6 Phase	Disabled		235	240	278	356	395	400	400	400	1000	2
Injector 7 (AUX1) Phase	Disabled		220	235	276	352	393	100	100	400	500	1
Injector 8 (AUX2) Phase	Disabled		20	35	50	65	80	95	110	125		
Squirt twice per cycle						MA	AP ser	nsor (kPa)			1

9.2 Ignition advance

The trigger system is alredy configured in base map loaded into device. The main ignitiona advance table can be found in *Ignition/Ign. Table #1.* The positive values means ignition angle before TDC, the negative values means ignition angle after TDC. Too much ignition advance can destroy the engine by causing knocking or detonation. Ignition angle advance table is the key table in aspect of efficiency of the engine, and influence the engine torque.

There is also table called Coil dwell time (**Ignition/Coils/Coil dwell time**), that defines how long is the ignition coil turn on before the spark. In general the longer the time, the more spark energy, however if the coil dwell time is too long, there is no more spark energy and the coil gets hot.

9.3 Knock sensing

The EMU Black supports knock sensors, and when the knocking occurs, the engine protection action can be performed (ignition retard, fuel dose increase). The EMU continuously samples knock sensor signal (in so called knock window), filters it for engine characteristic knock frequency and integrate the signal voltage. The output is presented in *Knock Sensor Value* channel. This value is compared with the *Engine noise table* (Knock sensors/Engine noise) and the value *Knock level* is calculated.

Knock Level = Engine Noise – Knock Sensor Value

If the *Knock level* value is greater than 0, the knocking occurs. The higher Knock level then the more severe the knock is. If the engine internals were changed the engine noise value could require adjustment.

When the knock occurs then the action takes place. You can define the action parameters in *Knock sensors/Action* window. Due to possible engine modifications, camshafts wear, etc. the base map doesnt define knock sensor parameters nor engine

noise table. For more information about knock sensor setup please press F1 or press ? icon on the knock sensor parameters window in EMU Black client software.

9.4 Idle control

To adjust the idle RPM there are several important tables. The first table is *Idle / Idle ref table*. This table defines how much the throttle opened (the percent of DBW idle range) for given engine temperature and idle target. The more the throttle is opened the more air enters the engine and the higher is the engine revolution. The idle target is defined in the table *Idle/Idle target RPM*.

This tables defines the engine rpm when on idle as a function of engine coolant temperature. In addition to air control the idle RPM is controlled in closed loop using **Idle / Ignition control** strategy. Depending on idle target and current idle, this strategy adjusts ignition advance to increase / decrease RPM. The more the ignition advances the higher engine RPM.

> 🗔 🗖 🔞	
Action	
Active	v
Min RPM	2000 rpm
Max RPM	6000 rpm
Min TPS	0 %
Gearcut delay	100 ms
Fuel enrich rate	1 %/V
Max fuel enrich	2 %
Ignition retard rate	1,5 °/V
Max ignition retard	2 °
Boost corr. rate	0 %/V
Max boost correction	0 %
Restore rate	10 revolutions

	dle -	Idle	ref ta	ble			, (X
D			۱ 🧔			1	1		
60	60	58	55	52	49	47	45	1400	
59	59	57	53	49	46	43	41	1250	
59	58	55	51	47	44	41	38	1100	RPM
57	55	52	48	44	41	38	36	950	ldle target (RPM)
53	-51	48	45	42	-39	-37	36	800	le tar
-35	-15	5	25	45	65	85	105		Þ
	Coolant Temp. (°C)								

9.5 Can Bus

The EMU Black supports Mini R53 CAN BUS powertrain stream. It is set in *CAN,Serial/CAN* as a CAN BUS dashboard. There are 3 options available:

- Lotus 2ZZ (DBW) for the cars equipped in electronic throttle

- Lotus 2ZZ (Cable throttle) for the cars equipped in electronic throttle

- Lotus S3 2ZZ, for S3 cars equipped in 2ZZ engines

The following data is sent over the CAN BUS:

- Check engine light
- Oil pressure lamp
- Shift light (setup EMU BLACK shift light to get it work Sport / Shift light
- Coolant temperature gauge
- Vehicle speed
- RPM

- Fuel level (the calibration of fuel level is available in **Sensors setup / Other sensors / Fuel level** cal.)

There was a series of 2ZZ equiped cars with the CAN BUS speed 500kbps instead of 1Mbps. In such case the CAN BUS speed should be changed from 1Mbps to 500Kps

9.6 Air condition

The AC clutch in 2ZZ equipped cars is controlled by user switch and series connected trinary switch that opens if the AC gas pressure is too low or too high. This trinary switch controls the AC clutch engagement. The AC clutch request is connected to the CAM#2 input of PNP ECU.

Ignition - CAM #2	
🗁 🔒 🗆 📀	
CAM #2	
Sensor type	Hall / Optical sensor
Enable pullup	Pullup 1K
Input filter	None
Trigger type	Do not use CAM input #2
Trigger edge	Falling

Due to the fact the AC clutch request switch to ground, the *CAM#2 Switch* input is On when the AC clutch is not required and Off when AC clutch is requested.

When the AC is requested by the AC switch, the ECU must engage the AC compressor clutch when the AC pressure is outside working range.

CAN, Serial - CAN	
🗁 🔒 🗔 😮	
CAN	
CAN-Bus speed	1 Mbps
Enable terminator 1200hm	
Send EMU stream over CAN-Bus	
EMU stream base ID(HEX)	600
Send data to BTCAN module	
Send via BTCAN module RaceChron	nc 🔲
OBD2 support	
Bosch Motorsport ABS	None
CAN-Bus dashboard	Lotus 2ZZ (DBW)

The parameters for AC system are defined in **Outputs/AC clutch**. The activation input is *CAM#2 switch inverted*, and the AC compressor relay is connected to the AUX3. To turn on the coolant fan when the AC is active, the option *Turn On when AC active* must be set in **Outputs/Coolant fan** setup.

Outputs - AC clutch		<u>_ ×</u>
D 🔒 🗆 🛛		
AC clutch		
Activation input	CAM #2 input inverted	-
Clutch output	Aux 3 (5A, G5)	
Invert output		
Min RPM	500 rpm	
Max RPM	9000 rpm	
Min AC pressure	0 kPa	
Max AC pressure	2000 kPa	
AC pressure hyst.	500 kPa	
Max TPS	70 %	
Max CLT	110 °C	
Min EVP temperature	0	
Time to engage	250 ms	
AC fan output	None	
AC fan invert output		

9.7 Revolution limiter

There are two revlimiters in EMU Black. One is based on fuel cut (Hard rev limiter) and its parameters are defined in *Fueling/Fuel Cut*. If the revolutions are higher than RPM Limit, the fuel is cut.

The second rev limiter, called *soft rev limiter* can be defined in *Ignition/ Soft rev limiter*. This allows soft limiter based on ignition retard and spark cut. If the car is equiped in catalystic converter, using any spark cut strategy can lead to its damage!

Ignition - Soft Rev Limite	er	
🗁 🔒 🗆 😮		
Soft Rev Limiter		
Enable soft rev limiter		
Rev limit	8200 rpm	
Control range	100 rpm	
Spark cut percent	50 %	
Ignition retard	8 °	
1		

9.8 Variable Valves Lift

2ZZ Engine is equiped with the VVL mechanism. It is controlled in On/Off manner.

To control variable valves lift the EMU Vtect strategy is used. It defines the region of RPM, MAP, TPS and VSS where the VVL

🔲 Other - Tables switch	_	미×
🗁 🔒 🗆 🛛		
Tables switch		
Tables switch mode	Switch with user input	
Tables switch input	None	-
Switch VE Table		
Switch IGN Table		
Switch AFR Table		
Switch CAM#1 Table		
Switch CAM#2 Table		
Switch cranking fuel		
Switch warmup enrichment		
VTEC override VE table switch		

should be on. The VVL control solenoid is connected to the AUX5 output. When VVL is

VVT - VTEC Control		
De 🔒 🗆 😯		
VTEC Control		
VTEC output	Aux 5 (5A, G12)	-
Invert output		
RPM Min 1	4800 rpm	
RPM Max 1	8900 rpm	
RPM Hist 1	300 rpm	
MAP Min 1	50 kPa	
MAP Max 1	300 kPa	
MAP Hist 1	10 kPa	
TPS Min 1	50 %	
TPS Max 1	100 %	
TPS Hist 1	20 %	
VSS Min 1	0 km/h	
VSS Hist 1	5 km/h	

active the VE table switch from VE table #1 to VE table #2. This behaviour is defined in **Other / Tables switch.**

9.9 Variable Valves Timing

In addition to the VVL mechanism, the variable valves timing is present on the intake camshaft. The control solenoid is connected to the AUX 6 output, and the camshaft advance is defined in VVT/CAM1 angle #1 table. It is worth to note that changing the CAM advance, changes the volumetric efficiency of the engine for given region, and the VE table should be adjusted.

9.10 Heat soak pump

The 2ZZ engine is equipped in heat soak water pump. The EMU Black use *Outputs / Parametric / Param. output 4* to control this pump. When the coolant temperature is over 65°C the heat soak pump start to work.

In addition to this the ECU keep powering even if the ignition is off but the coolant temperature is equal or higher thatn 57°C. Two mechanisms are involved: *Other/Delayed turn off* and *Outputs / Parametric / Virtual output#1* which defines the condition for delayed turn off.

Outputs - Param. output 4	
🗁 🔒 🗆 🛛 😮	
Param. output 4	
User name	heat soak relay
Output	Injector 6 (5A, G22)
Invert output	
Variable #1 type	CLT (°C)
Variable #1 operator	EQUAL OR GREATER THAN
Variable #1 value	65
Variable #1 hysteresis	6
Logical operator	And
Variable #2 type	RPM
Variable #2 operator	LOWER THAN
Variable #2 value	100
Variable #2 hysteresis	1
Delay to activate	0 s
Enable cycling	
Cycling on time	1s
Cycling off time	1s
Cycle once	

📕 Outputs - Virt. param o	ut 1 _ 🗖 🗵	Other - Delayed turn of	f	
Do 🔒 🗆 🔞				
Virt. param out 1		Delayed turn off		
User name	ecu power	Enable		
Invert output		Minimum time to turn off	1s	
Variable #1 type	CLT (°C)	Turn off condition	Virtual output #1	
Variable #1 operator	EQUAL OR GREATER THAN			
Variable #1 value	57			
Variable #1 hysteresis	2			
Logical operator	And			
Variable #2 type	RPM			
Variable #2 operator	LOWER THAN			
Variable #2 value	1500			
Variable #2 hysteresis	0			
Enable cycling				
Cycling on time	1s			
Cycling off time	1s			
Cycle once				

9.11 Coolant fans

The 2ZZ engine has coolant fan with the two working speeds slow and fast. The slow speed is managed by *Outpus / Coolant fan* strategy.

The fast speed is controlled by Outputs / Parametric / Param. output 1

🧮 Outputs - Param. outpu	it 1	🔲 Outputs - Coolant fan		
Do 🔒 🗆 👔				
Param. output 1		Coolant fan		
User name	Coolant Fan High	Activation temperature	95	-
Output	Aux 2 (5A, G13)	Hysteresis	4 °C	
Invert output		Output	Aux 1 (5A, G21)	
Variable #1 type	CLT (°C)	Invert output		
Variable #1 operator	GREATER THAN	Turn off during cranking	✓	
Variable #1 value	97	Turn off when no RPM		
Variable #1 hysteresis	5	Turn on when AC active	✓	
Logical operator 1	Or	Turn on if CLT sensor fail	✓	
Variable #2 type	None	Time to engage	250 ms	
Variable #2 operator	GREATER THAN	Turn off over vss	400 km/h	
Variable #2 value	100	PWM control	Disabled	
Variable #2 hysteresis	10	PWM min DC	5 %	
Delay to activate	0 s	PWM max DC	95 %	
Enable cycling		PWM AC active min DC	0	
Cycling on time	6 s	PWM proportional gain	20	
Cvclina off time	0.88 s			

9.12 Vehicle speed

Vehicle speed is read directly from digital signal sent from ABS module. EMU BLACK is not capable to read 4 vehicle speeds from digital inputs (only via CAN BUS). The speed is read from the front right wheel.

9.13 Traction control

The Lotus cars are equipped in Traction controll button. This button can be used for activation traction control or for activation other ECU function (eg. second set of tables). Due of the fact that in this application ECU is not able to read 4 wheel speeds only RPM based traction control strategy can be used (it sense RPM delta and based on it can reduce engine torque by cut spark or fuel). To use Speed Based traction control the Ecumaster Wheels speed to CAN module can be used to send information about wheel speeds via CAN. More information about traction control configuration can be found in EMU BLACK software help.

9.14 Oil pressure sensor

Factory oil pressure sensor (switch) is connected to the *Switch #2* and assigned to oil pressure sensor. It allows to control oil pressure light on the dashboard.

9.15 Starter relay

The starter relay provides the electic current to the starter motor. It must be enabled prior to cranking. It is controlled using *Outputs / Parametric / Param. output 3.* When the RPM are lower than 1000RPM it is possible to engage the starter.

9.16 MAP Sensor

The PNP ECU uses built in 400kPa MAP sensor and the vaccum hose must be connected to the nipple ine the ECU.

10. Function assignement

EMU Black input	Function	
Analog #1	DBW position sensor	
Analog #2	Fuel level	
Analog #3	Traction control switch for version different than 08My	
Analog #4	DBW position sensor plausibility check sensor	
Analog #5	Pedal position plausibility check sensor	
Analog #6	Traction control 08My version	
TPS	Pedal postion sensor	
CLT	Coolant temperature sensor	
IAT	Intake air temperature sensor	
KS #1 Input	Knock sensor	
Primary trigger input	Crank position sensor	
CAM #1 input	Camshaft position sensor	
CAM #2 input	AC Request (Inverted)	
Switch #1	Oil pressure switch VVL	
Switch #2	Oil pressure switch	
Switch #3	AC fan request	
AUX #1	Radiator low speed	
AUX #2	Radiator high speed	
AUX #3	AC compressor relay	
AUX #4	Main relay	
AUX #5	VVL	
AUX#6	VVTi	
Injector #1	Injector 1	
Injector #2	Injector 2	
Injector #3	Injector 3	
Injector #4	Injector 4	
Injector #5	Fuel pump relay	
Injector #6	Heat soak pump	
H-Bridge 1A	DBW Motor	
H-Bridge 1B	DBW Motor	
H-Bridge 2A	TC warning light	
H-Bridge 2B	Starter relay	
Ignition output #1	Coil #1	
Ignition output #2	Coil #2	
Ignition output #3	Coil #3	
Ignition output #4	Coil #4	
CANL, CANH	CAN Bus	
WBO heater	WBO heater	
VSS Input	Right front wheel speed	

The table below shows the assignement of the inputs / outputs to EMU device

11. Spare inputs / outpus

Some of the unused inputs / outputs of EMU BLACK are available on the not connected ECU terminals.

ECU Terminal	Function	
1G	EGT Input #1	
2C	RS232 Tx	
3C	RS232 Rx	
3D	WBO RCal	
3F	EGT Input #2	
4E	WBO Ip	
4F	WBO VGnd	
3A	Knock Sensor input #2	
3L	Flex Fuel Input	

12. Revision history